KEY TO LARVAL TORMICIDAE INTERCEPTED, OR POTENTIALLY ENCOUNTERED, AT U. S. PORTS OF ENTRY

T. M. Gilligan, 2014 – Modified from Brown, 2011

Currently, the family Tortricidae includes three subfamilies: Tortricinae, Olethreutinae, and Chlidanotinae. Among the Tortricinae, most pest species are in the Archipini, usually as external feeders (leaf rollers). The Olethreutinae contain many pest species in the Grapholitini that feed internally in fruits or stems. Chlidanotinae larvae are poorly known; most bore in twigs, fruits or seeds. “Cochylidae,” used in many older keys, is a tribe of the Tortricinae and is no longer recognized as a separate family.

Key to types (as defined by Brown 2011):

1. D1 and SD1 of A9 on the same pinaculum; anal comb present or absent ... 2
1.’ D1 and SD1 of A9 on separate pinacula; anal comb almost always present “Tortricinae” type

2. L pinaculum on T1 enlarged, extending beneath and beyond (posterad of) spiracle... “Cryptophlebia” type
2.’ L pinaculum on T1 variously shaped, but not extending beneath spiracle............................... 3

3. Anal comb absent .. “Cydia” type
3’. Anal comb present .. “Olethreutinae” type

“Tortricinae” type:

1.’ SV group on A1,2,7,8,9 usually 3:3:2:2:2 or 2:3:2:2:2 Tortricini (Acleris or Tortrix)
 (Effectively a bisetose SV on A7 vs. a trisetose SV on A7 below)
1. SV group on A1,2,7,8,9 usually 3:3:3:2:2 ... 2
 (This is the most common arrangement in the Tortricinae)

2. SD1 setae of anal shield moderate in length; D pinacula on mesothorax not elongated posteriorly;
 Europe ... 3 (Archipini)
 (Archipini larvae in the genera Adoxophyes, Clepsis, Choristoneura, Archips, etc. from Europe are very difficult to separate using only morphology)
2.’ SD1 setae of anal shield extremely long; D pinacula on mesothorax elongated posteriorly; New World
 or Europe ... 5 (mostly Sparganothini)
 (With the interception of Platynota stultana on Spanish peppers, we can no longer assume that
 Sparganothini larvae only originate from the New World; note that MacKay (1962) and Brown
 (2011) used “L1” seta, which should be SD1 seta according to Stehr (1987); also note that long
 setae can easily be broken in preserved specimens)

3. On lilac (Syringa); abdominal crochets biordinal .. Adoxophyes orana
3.’ On cut flowers or Capsicum; abdominal crochets triordinal or partially triordinal 4
“Tortricinae” type (cont.):

4. Prothoracic shield yellow or pale yellow, with a large, dark, irregular blotch at posterior angle Cacoecimorpha pronubana
4.’ Prothoracic shield without large, dark, irregular blotch at posterior angle Clepsis spp.

5. Prothoracic shield with distinct dark lateral line; head with dark lateral line (= genal band); New World ... Amorbia spp.
5.’ Prothoracic shield without distinct dark lateral line; head with or without dark lateral line (= genal band); New World or Europe ... 6

6. Head capsule dorsally flattened, body spinules long, slender, and spinelike; New World ... Amorbia spp.
6.’ Head capsule rounded, body spinules appear as round or pointed granules, short and not spinelike; New World or Europe ... 7

(Passoa and Hodges (1995) used the form of the head capsule and body spinules to separate Amorbia from Platynota; they also used the spacing of the D1 and SD1 setae on the anal shield, but this character appears to overlap between the two genera and is not included here)

7. Europe (probably Spain) on Capsicum .. Platynota stultana
7.’ New World ... Platynota spp.

“Cryptophlebia” type:

1. Anal comb present ... 2
1.’ Anal comb absent .. 5

(The presence or absence of an anal comb is often used to separate T. leucotreta from Cryptophlebia; however it is quite common for C. ombrodelta larvae to have a rudimentary anal comb with 4-6 small teeth; it is not known if this character persists throughout the genus although we have observed that most intercepted Cryptophlebia lack an anal comb)

2. L-group on A9 bisetose (both setae on same pinaculum); pinacula usually moderate to large; Vs on A9 much further apart than those on A8; mostly New World ... 3
2.’ L-group on A9 usually trisetose (all setae usually on same pinaculum); pinacula moderate; Vs on A9 slightly further apart than those on A8; Africa ... Thaumatotibia leucotreta

(Nearly half of all T. leucotreta interceptions come from South Africa on Citrus; this species is also one of the most commonly intercepted tortricids on pepper and eggplant; historical reports of several species in a T. leucotreta “complex” appear to be inaccurate as DNA sequencing of specimens from South Africa and Kenya has found no evidence of multiple species (Timm et al. 2010, Copeland et al. unpublished))

3. SV-group usually 2:2:2:2:1; pinacula large; on Capsicum from Mexico or Central America
.. Lorita scarificata

(Pogue (1986) reports that this species also occurs as far south as Brazil and has been introduced to Hawaii; we have not seen intercepted larvae from those locations)
3.’ SV group 3:3:2:2:2(1); pinacula moderate to large ... 4
“Cryptophlebia” type (cont.):

4. On _Opuntia_, Asteraceae.. Cochylini
4.’ On _Pithecellobium dulce_ from Mexico.. _Rudenia leguminana_
 (Numerous interceptions of this species from Mexico have been confirmed using DNA barcoding)

5. From Mexico, Central America, South America, or the Caribbean ... 6
5.’ From the Old World (including Australia), Hawaii, or other Pacific Islands.. 7

5.’ SV-group usually 3:3:2:2(1):1; L-group on A9 uni-, bi-, or trisetose; abdominal prolegs with 20-30 crochets ... _Ecdytolopha fabivora_
 (Razowski (2011) moved _fabivora_ into _Ecdytolopha_, although this species is still placed in _Cydia_ in most publications and databases; larvae are occasionally intercepted on _Phaseolus_ or _Glycine max_ from Mexico, Central America, South America, and the Caribbean; it is possible that other species of _Ecdytolopha_ may fall out in this couplet if found feeding on the same hosts)

6. SV-group usually 3:3:3(2):2:1; L-group on A9 usually trisetose; abdominal prolegs with 40-60 crochets ... _Gymnandrosoma aurantianum_
 (Larvae of many _Gymnandrosoma_ can be separated from those of _Ecdytolopha_ by the distance between the V setae on A9: approximately the same as the distance between Vs on A8 in _Ecdytolopha_ and 1.2-2.0 times the distance between Vs on A8 in _Gymnandrosoma_ (Adamski and Brown 2001); we have observed both states in larvae of _E. fabivora_, so this character is not included in the couplet)

7. Abdominal crochets uniordinal; from Hawaii on macadamia, litchi, mango, or koa
.. _Cryptophlebia ilepida_
7.’ Abdominal crochets biordinal or triordinal; from Hawaii, Asia, Australia, Africa, or Pacific Islands 8

8. From Australia, Japan, India, Southeast Asia, or Hawaii; on macadamia, monkeypod, litchi, longan fruit, or others... _Cryptophlebia ombrodelta_
8.’ From Africa, Seychelles, Mauritius; usually on litchi or macadamia _Cryptophlebia peltastica_
8.’’ From Guam.. _Cryptophlebia_ spp.
 (Both _C. ombrodelta_ and _C. peltastica_ occur in Guam and other _Cryptophlebia_ occur in the region; it is not known how larvae of these species can be reliably separated using morphology)

“Cydia” type:

1. D1, D2, and SD1 setae on A9 all on same enlarged (ill-defined) pinaculum.. 2
1.’ D2 setae on pinacula separate from D1 and SD2 setae (D2 shared pinaculum sometimes very weakly developed)... 3

2. On _Annona_ or _Mammee_; Mexico, Central America, Caribbean.. _Talponia batesi_
2.’ On _Persea americana_; Mexico, Central America, South America, Caribbean.................._Cryptaspasma_ spp.
 (The most frequently encountered _Cryptaspasma_ on avocado in Mexico or Guatemala is _C. perseana_ (Gilligan et al. 2011); however, other _Cryptaspasma_ have been reared from avocado in Central and South America; no members of this genus have ever been reported in PestID, but it is unlikely they would have been recognized as the larva of _Cryptaspasma_ was just recently described)
“Cydia” type (cont.):

3. On Castanea ... 4
3.’ On other hosts ... 5

4. From Europe ... 4
4.’ From Asia ... 5
(Brown and Komai (2008) provide a key to separating the various species of Castanea-feeding Olethreutinae; here we group them by region because of the difficulty in separating preserved specimens; the most frequently reported intercepted tortricid is C. splendana from Europe)

5. On Aracauria; from South America (Brazil, Argentina, and Chile) ... Cydia araucariae
5.’ On Saccharum officinarum; from Asia .. Tetramoera schistaceana
5.” On various other hosts (usually Rosaceae or Juglandaceae); mostly from Europe or Mexico 7
(Because of the variability in Cydia larval morphology, most species in this group are better identified with a host/origin association)

6. With distinct pattern on anal and prothoracic shields; A9 L-group trisetose with ventralmost seta on a separate pinaculum (two pinacula total); 25-35 abdominal crochets; cosmopolitan Cydia pomonella
6.’ Without distinct pattern on anal and prothoracic shields; A9 L-group variable (often trisetose); 15-40 abdominal crochets ... Cydia spp. (including C. pomonella)
(Cydia larvae including C. pomonella are extremely variable; there is a “typical” look for C. pomonella where the A9 L-group is trisetose and the ventralmost seta is on a separate pinaculum from the other two setae, but any arrangement can be found ranging from each seta on three separate pinacula to all setae on the same pinaculum; the mottling on the anal shield and T1 shield is also quite variable and is often faint or absent)

“Olethreutinae” type:

1. On Quercus; from Europe; integument spiny .. Tortrix viridana
1.’ On other hosts; from any region; integument variable .. 2
(The SV-group counts in T. viridana vary from 3:3:2:2:2 to 2(3):2:2:2:2, so this species will not always key out correctly in Brown 2011; it should be easily distinguished by host/origin)

2. SV-group on A7 trisetose ... 3
2.’ SV-group on A7 bisetose ... 4

3. V setae on A9 ca. 2 times distance between Vs on A8; on Vitis; from Europe, Asia, Africa, parts of South America (Chile, Argentina) ... Lobsia botrana
3.’ V setae on A9 not further apart than Vs on A8; on on Vitis, Citrus, Prunus, kiwi, and other fruits; from Chile and Argentina ... Proeulia spp.
(Note that in some Proeulia the D1 and SD1 setae are on separate pinacula on A9; these larvae would key out as “Tortricinae” type and are not treated here or in Brown 2011)
“Olethreutinae” type (cont.):

4. Pinacula large and brown; prothoracic and anal shields distinctly patterned; on Castanea (Europe)
4.’ Pinacula small or moderate, pale or tan; prothoracic and anal shields with or without distinct pattern; various hosts ...

5. Head with black band extending from postgenal suture to seta 02; primarily on Fabaceae or Malvaceae; from Mexico, Central and South America, Caribbean ... 6
5.’ Head usually without genal band extending to 02; from other hosts and various locations 7

6. With 30-40 crochets on abdominal prolegs; on Fabaceae .. Crocidosema aporema
6.’ With 13-20 crochets on abdominal prolegs; primarily on Malvaceae but also other hosts
.. Crocidosema plebejana

(Although C. plebejana is not listed as an intercepted species in PestID, we have examined numerous larvae identified as C. aporema and determined them to be C. plebejana; larvae of the two species are nearly identical with the exception of the abdominal crochet counts as listed above; Crocidosema plebejana is a common cosmopolitan species that feeds primarily on Malvaceae, but it is recorded on a variety of other plants, including those in the Fabaceae; it could be intercepted from nearly any location, but is included here from the New World to avoid confusion with C. aporema; note that MacKay (1959) described C. aporema larvae under Epinotia opposita and illustrated 30-40 crochets for that species)

7. Crochets few (16-20), uniordinal; SV-group 2:3:2:1:1; on various hosts; from Europe Cnephasia longana
7.’ Crochets numerous (>25), uniordinal or biordinal; SV group variable, usually 3:3:2:2:2 or 3:3:2:2:1; on Rosaceae and Ericaceae; cosmopolitan ... Grapholita spp.

For John Brown’s full key to identifying tortricid larvae intercepted at U.S. ports of entry, click on the following link (Brown 2011): http://www.lepintercept.org/Brown_2011_Tortricidae.pdf

For more information on intercepted tortricid pests and non-targets (both adults and larvae), visit TortAI, Torricids of Agricultural Importance (Gilligan & Epstein 2012): http://idtools.org/id/leps/tortai/index.html

The following is a partial list of tortricid pests referenced above that have been sequenced (DNA barcoded) for the TortAI project: http://idtools.org/id/leps/tortai/TortAI_DNA_sequence_search_tool_log.pdf

This key was produced and distributed as part of LepIntercept. Please cite as follows: